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What do programmers want for a heterogeneous environment?

 Separation of concerns  suitable for long life time
 Application developer does not have to become a computer scientist or technologist

 Tuner has freedom to adapt to new platforms, with easy-to-use building blocks

 Sequential semantics  tractable, debuggable

 Task concurrency  among and within computing elements

 Pipeline parallelism  hide communication latency

 Unified interface to heterogeneous platforms  ease of retargetability
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hStreams delivers these features
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What is hStreams?

 Library with a C ABI fit customer deployment needs
 Opened sourced: 01.org/hetero-streams, also lotsofcores.com/hstreams

 Streaming abstraction

 FIFO semantics, out of order execution

 Streams are bound to resources; compute, data transfer and sync actions occur in that context

 Memory buffer abstraction

 Unified address space

 Tuner can manage instances independently, e.g. in each card or node

 Buffers can have properties, like memory kind

 Easy retargeting to different platforms

 Dependences among actions

 Inferred from order in which library calls are made

 Managed at the buffer granularity

 Easy on ramp, pay as you go scheme
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Current deployments with hStreams

 Production

 Simulia Abaqus Standard, v2016.1

 Siemens PLM NX Nastran, v11

 MSC Nastran, v2016

 Academic and pre-production

 Petrobras HLIB – Oil and gas, 3D stencil

 OmpSs from Barcelona Supercomputing Center

 …more on the way
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API layering

 Application frameworks can be layered on top of hStreams

 hStreams adds streaming, memory management on top of offload plumbing

 Possible targets include localhost, PCI devices, nodes over fabric, FPGA,s SoCs
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hStreams Hello World

// Main header for app API (source)

#include <hStreams_app_api.h>

int main() {

uint64_t arg = 3735928559;

// Create domains and streams

hStreams_app_init(1,1);

// Enqueue a computation in stream 0

hStreams_app_invoke(0, "hello_world",

1, 0, &arg, NULL, NULL, 0);

// Finalize the library. Implicitly

// waits for the completion of

// enqueued actions

hStreams_app_fini();

return 0;

}

// Main header for sink API

#include <hStreams_sink.h>

// for printf()

#include <stdio.h>

// Ensure proper name mangling and symbol

// visibility of the user function to be

// invoked on the sink.

HSTREAMS_EXPORT

void hello_world(uint64_t arg)

{

// This printf will be visible

// on the host. arg will have

// the value assigned on the source

printf("Hello world, %x\n", arg);

}

source sink
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1 other node,

1 stream

In stream 0,

1 argument



Heterogeneous StreamingIPDPS/AsHES’16

void tiled_cholesky(double **A) 

{

int k, m, n;

for (k = 0; k < T, k++) {

A[k][k] = DPOTRF(A[k][k]);

for (m = k+1; m < T; m++) {

A[m][k] = DTRSM(A[k][k], A[m][k]);

}

for (n = k+1; n < T; n++) {

A[n][n] = DSYRK(A[n][k], A[n][n]);

for (m = n+1; m < T; m++) {

A[m][n] = DGEMM(A[m][k], A[n][k], A[m][n]);

}

}

}

}
It looks like there’s opportunity for concurrency

But do you want to create an explicit task graph for each of  these?

Consider a Cholesky factorization, e.g. for Simulia Abaqus
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So what’s a good abstraction?  How about streams?

 A sequence of library calls induces a set of dependences among tasks

 The dependence graph is never materialized

 A tuner or runtime can bind and reorder tasks for concurrent execution and pipelining
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 Manual (now): individual streams – bound to subsets of threads
 Tuner does the compute binding, data movement, synchronization

 MetaQ (future version) – spans all resources
 Pluggable runtime does compute binding, data movement, synchronization
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operands
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Favorable competitive comparison

 Similar approaches

 CUDA Streams

 OpenCL (OCL)

 OmpSs

 OpenMP offload

 Also at Intel

 Compiler Offload Streams

 LIBXSTREAM

 Fewer lines of extra code

 2x CUDA Streams, 1.65x OCL

 Fewer unique APIs

 2.25x CUDA Streams, 2x OCL

 Fewer API calls

 1.9x CUDA Streams, 1.75x OCL
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Tiling and scheduling

 Matrices are tiled

 Work for each tile bound to stream

 Streams bound to a subset of 
resources on a given host or MIC

 hStreams manages the 
dependences, remote invocation, 
data transfer implementation, sync

11

Tiling and binding for matrix multiply 

Tiling and binding for Cholesky
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Benefits of synchronization in streams

 Synchronization outside of streams – OmpSs on CUDA Streams

 OmpSs checks if cross-streams dependences satisfied

 Host works around blocking by doing more work

 Synchronization inside streams – OmpSs on hStreams

 Cross-stream sync action enqueued within stream

 Performance impact

 For a 4Kx4K matrix multiply, the host was the bottleneck

 Avoiding the checks for cross-stream dependences yielded a 1.45x perf improvement
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Tiled Cholesky – MAGMA, MKL AO

HSW:
2 cards + host vs. host only:  2.7x
1 card + host vs. host only:  1.8x

Compared favorably with
MKL automatic offload, MAGMA

after only 4 days’ effort

MAGMA* uses host only for panel on diagonal,

hStreams balances load to host more fully 

hStreams optimizes offload more aggressively

MAGMA tunes block size and algo for smoothness

hStreams is jagged since block size is less tuned

System info: 

Host: E5-2697v3 (Haswell) @ 2.6GHz, 2 sockets

64GB 1600 MHz; SATA HD; 

Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390; 

uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first runMAGMA MIC 1.4..0 data measured by Piotr Luszczek of U Tenn at Knoxville 

Optimization notice *Trademarks may be claimed as the property of others
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Tiled matrix multiply – impact of load balancing

HSW:
2 cards + host vs. host only:  2.89x
1 card + host vs. host only: 1.80x

IVB:
2 cards + host vs. host only:  3.95x
1 card + host vs. host only: 2.45x

Good scaling across host, cards

Load balancing (LB) matters more for 

asymmetric perf capabilities (IVB vs. KNC)

System info: 

Host: E5-2697v3 (Haswell) @ 2.6GHz, v2 (Ivy Bridge) @ 2.7GHz,

Both 2 sockets, 64GB 1600 MHz; SATA HD; 

Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390; 

uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first run

Optimization notice
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Simulia Abaqus Standard*

 Offload to two cards, from IVB or 
more-capable 28-core HSW

 Showing modest gains from 
using 2 cards in addition to host 
on more-capable HSW

 Up to 2x at app level on less-
capable 24-core IVB

System info: 

Host: E5-2697v3 (Haswell) @ 2.6GHz, v2 (Ivy Bridge) @ 2.7GHz,

Both 2 sockets, 64GB 1600 MHz; SATA HD; Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390; uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first run

Simula Abaqus Standard preproduction v2016 

results measured by Michael Wood of Simulia

There are no guarantees that the formal release will 

have the same performance or functionality

Optimization notice *Trademarks may be claimed as the property of others
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Conclusion: results delivered by hStreams

 Support for heterogeneity

 Offload to multiple cards, localhost

 Portability, retargetability

 Effective layering above and below hStreams

 Ease of use

 ~2x fewer lines of code, fewer API calls, fewer unique APIs, less variable allocation

 1.4x lower overheads for cross-stream coordination

 Ease of design exploration: target affinity, degree of tiling, number of streams

 Ease of porting and future proofing through separation of concerns

 Performance

 Outperformed MAGMA and MKL Automatic Offload by 10%

 Perfect scaling using MPI and multiple cards on Petrobras

 Boosted Petrobras HLIB by 10% by overlapping communication with computation

 2+x of just host by adding 2 cards
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Related work

 Offload libraries: CUDA Streams, OpenCL

 Explicit event creation, can only wait on 1 event at a time

 Fewer unique APIs, fewer extra lines of code

 Also: Qualcomm MARE, StarPU, TBB Flow Graph

 OmpSs

 Uses dynamic scheduling, data movement, sync on top of hStreams or CUDA Streams

 Offload to 1 card only; does not target localhost

 Source-source compiler

 Compiler based

 Intel Offload Streams: offload only; does not target localhost

 OpenMP 4.x

• Task scheduling within a single domain, offload to other domains 

• Does not support stream abstraction, dependences enforced only at the same nesting level

 Does not depend on C++ 

 SyCL, Phalanx, CnC, UPC++, CHARM++, TBB FG, Kokkos, Legion, Chapel
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What would you like to ask or discuss?
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hStreams vs. CUDA Streams performance

 Setup: factorize a supernode with a Simulia standalone harness

 Compare offload to K40x and KNC, with the same host (IVB)

 Upper bound: (total solver time) – (on-card time) to factor out HW diffs

 Measurement methodology may under-count K40x non-kernel time

 Normalized: (ratio of solver time)(ratio of native kernel time)

 Lower hStreams overheads balance higher KNC card-side times

 hStreams shows lower overhead than CUDA Streams
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S4b S8 “A”

CUDA Streams non-kernel 9.8s 7.6s 3.1s

hStreams non-kernel 5.2s 4.4s 2.7s

hStreams advantage 
vs. CUDA Streams, upper bound

1.89x 1.71x 1.12x

hStreams advantage 
vs. CUDA Streams, normalized

1.28x 1.24x 1.03x

Actual hStreams 

advantage 

in between these
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Petrobras application

 Oil and gas application, performs reverse time migration

 A high-level Fortran90 library called HLIB abstracts CUDA, OpenCL and CPU

 hStreams support was added by Paulo Souza of Petrobras
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Petrobras* HLIB (Heterogeneous library)

 Petrobras’s current code 
executes one task at a time, 
across a whole card, and 
doesn’t yet use host

 1.10x benefit from using 
asynchronous pipelining for 
optimized (shorter) code, 
1.07x for unoptimized

 Benefit (not shown) from   1 
MIC is 1.5x, 4 MICs is 6.0x

 Submitted to IPDPS15
System info: 

Host: E5-2697v3 (Haswell) @ 2.6GHz, 2 sockets

64GB 1600 MHz; SATA HD; Linux 2.6.32-358.el6.x86_64; MPSS 3.5.2, hStreams for 3.6

Coprocessor: KNC 7120a FL 2.1.02.0390; uOS 2.6.38.3; Intel compiler v16/MKL 11.3, Linux

Average of 4 runs after discarding the first run

Petrobras data from preproduction HLIB code

measured by Paulo Souza of Perobras

There are no  guarantees that the formal release will 

have the same performance or functionality

Optimization notice *Trademarks may be claimed as the property of others
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Configurations

22

Specification 
Intel Xeon Processor 
E5-2697v2 (IVB) and 

E5-2697v3 (HSW)  

Intel Xeon Phi Coprocessor 
C0-7120A (KNC) 

NVidia K40x 

Skt,Core/Skt,Thr/Core 2S,12C(v2),14C(v3),2T 1S, 61C, 4T 1S, 15C, 256T

SP, DP width, FMA {8,4,N (v2) 8,4,Y (v3)} 16,8,Y 192, 64, Y

Clock (GHz) 2.7(v2) 2.6(v3) 1.33 (turbo) 0.875 (turbo)

RAM (GB) 64 DDR3-1.6GHz 16 GDDR5 12 GDDR5

L1 data, instr (KB) 32,32  32,32 64

L2 Cache (KB) 256 512 roughly 200 

L3 Cache (KB) 32K(v2),35K(v3) (sh)  - -

OS, Compiler {RHEL 6.4, Intel 16.0} {Linux, Intel 16.0} -

Middleware MPSS 3.6 MPSS 3.6 CUDA 7.5
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Simulia harness standalone performance

 Setup: factorize a supernode with a Simulia standalone harness

 Standalone data not available for K40x; Intel had only a MIC version

 HSW is a bit faster than KNC; IVB is much slower
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KNC offload HSW host as target IVB host as target

2.35s 2.24s 4.27s

4 60-thread streams 3 9-thread streams 3 7-thread streams


